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D. Structural failure criteria of wood structures 
 

Introduction 
The developed exact theory is given in the appended publications denoted by D, thus:  

D(1991), D(2008a), D(2008b), D(2010), D(2011), D(2012a) D(2012b) and primary, partly 

vervallen D(2006a), D(2006b). Other relevant derivations and applications are mentioned in 

these publications. The theory in all appended publications was derived by T.A.C.M. van der 

Put theory of perfect plasticity. Because a complete loading history analysis, with gradual 

increasing plasticity, until collapse is too extended and not necessary, the relatively simple 

limit analysis method can always be applied instead. Then, no matter how complex the 

geometry of a problem, or loading condition, is, it is always possible to obtain a realistic value 

of the collapse load. This theory is discussed in the next section: D-1.  

 

D-1. Upper and lower bound limit analysis of wood structures  
The ultimate state represents a variational extremum problem and thus is based on small 

geometrical changes (using undeformed dimensions in the equilibrium equations). Because of 

the small changes, the virtual work equations apply. Because the top of a loading curve can 

be reached in many ways, differing an internal equilibrium system from each other, the 

previous loading history is not involved in the determination of the extremum and it is 

possible to use a linear- full plastic loading diagram for limit analysis (as is applied e.g. in 

exact fracture mechanics C(2011b)). In Fig.D-1, a scheme of the loading curve is given with 

a boundary (the elastic limit, depending on loading rate, temperature, etc.) where below the 

behaviour can be assumed to be elastic (especially after mechanical conditioning) and where 

above the gradual flow of components at peak stresses and micro-cracking may have a 

similar effect as plastic flow with hardening history up to the ultimate failure stress. The total 

main plane loading curves due to flow, damage and hardening behavior at any deformation 

rate, temperature, moisture content, loading history etc., up to flow and failure, fully can be 

described by deformation kinetics (see Annex B). When this loading curve is followed to a 

chosen or real ultimate stress point and then unloaded, the elastic and “plastic” deformation is 

known of that limit point. (The “plastic” amount (permanent strain in Fig.D-1) depends on 

the past, unknown, loading history at growth, drying, manufacturing, transport and pre-

testing). 

Fig.D-1. Loading curve 

On reloading, the curve is elastic up to the limit point and it is possible to regard an elastic –

full plastic description of the loading line according to the dashed line in Fig.D-1 as an 

allowable displacement field in the sense of limit analysis (that needs not to be the real 
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occurring displacement for the virtual work equations). Also a reduced stiffness can be 

chosen as done for the Building Codes. 

The virtual work equation, represents the extremum condition that the first variation of the 

potential energy is zero. Thus a small variation of the total potential energy vanishes when 

the structure is in equilibrium. Thus the total work of an equilibrium system is zero for any 

virtual displacement. The virtual work equation thus is based on an equilibrium set and a 

compatible set, which need not, and should not, be related. Thus:  
* * *

i i i i ij ij

A V V

Tu dA Fu dV dV     ,  (D-1) 

integrated over the whole area A and volume V of the body. iT  and iF are external forces on 

surface and in the body; ij  are the stresses, in equilibrium with the external forces, which 

need not to be the real actual occurring stresses. The asterisk is used for the compatible set, to 

emphasize that the two sets are not related, thus are completely independent.  

A valid equilibrium set must satisfy the equilibrium equations:  
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and the equilibrium conditions at the load applications points (as boundary condition).  

Of the compatible set, are the strains *

ij  compatible with real or imagined (virtual) 

displacement rate *

iu  of the points of application of the external forces, following the strain 

and displacement rate compatibility equation.  
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Virtual displacements are not real, they can be physically impossible but they must be 

compatible with the geometry of the original structure and they must be small enough so that 

the original geometry is not significantly altered.  

As equilibrium set, also the load increments can be used giving the rate equation:  
* * *

i i i i ij ij

A V V

Tu dA Fu dV dV     .  (D-4) 

In the linear-full plastic schematization is the plastic zone a line in Fig.D-2, but is a plane in 

stress space. Plastic flow occurs when the yield function   0ijf    is satisfied. It is 

necessary that:  

 
Fig.D-2 Yield surface and flow rule 

 

  0a c p

ij ij ij     ,  (D-5) 



 3 

Thus this dot product is always positive and shows an angle 090  , because thermo 

dynamical real work (and real dissipation) has to be positive. Eq.(D-5) only is for all cases 

fulfilled when the vector p

ij  is perpendicular to the curve   0ijf   , thus is in the direction 

of / ijf   . This is the convexity requirement or normality rule wherefore the principle of 

maximal local energy dissipation applies for the actual stress state, i.e. the projection in 

fig.D-2, of vector a

ij  on p

ij  is then maximal, higher than such projection of any other critical 

vector. In that case also the zero value of eq.(D-5) is reached for the plastic stress increment. 

Thus for the plastic flow increment then is:  

0p

ij ij     (D-6) 

From eq.(D-4) and (D-6) follows, that when the limit load is reached and the deformation 

proceeds under constant load, all stresses remain constant and only plastic, (not elastic) 

increments of strain occur. Because at collapse, eq.(D-4) becomes:  
c c c c c c

i i i i ij ij

A V V

T u dA F u dV dV     .  (D-7) 

with 0c c

i iT F  , and with elastic and plastic parts of strain, c ec pc

ij ij ij     is eq.(D-7):  

( ) ( ) 0c c c ec pc c ec

ij ij ij ij ij ij ij

V V V

dV dV dV              (D-8) 

because of eq.(D-6), and thus 0c ec

ij ij   . Thus the elastic strain increment and consequently, 

the elastic stress increment, are zero and all deformation is plastic. Thus the elastic 

characteristic plays no part in the collapse at the limit load.  

Next it is possible to give the proof of the lower and upper bound theorems of limit analysis.  

The lower bound theorem states that, if an equilibrium distribution of stress E

ij , covering the 

whole body, can be found, which balances the applied loads and is everywhere below yield 

  0E

ijf   , then the body will not collapse.  

To prove this, assume that it is false, then two collapse equations exist:  
c c c c c c

i i i i ij ij

A V V

T u dA F u dV dV      

c c c c E c

i i i i ij ij

A V V

T u dA F u dV dV      

and consequently is, because all deformation is plastic:  

( ) 0c E pc

ij ij ij

V

dV    ,  (D-9) 

and because according to eq.(D-5): ( ) 0c E pc

ij ij ij     for 
E

ij  below yield, eq.(D-9) cannot be 

true and the lower bound theorem is proved.  

The upper bound criterion states that if a compatible mechanism of plastic deformation is 

found, which satisfies the displacement boundary conditions, then the loads, determined by 

equating the rate, at which the external forces do work, eq.(D-10): 
* *p p

i i i i

A V

Tu dA Fu dV  ,  (D-10) 

to the rate of internal dissipation, eq.(D-11): 
* *( )p p p

ij ij ij

V V

D dV dV      (D-11) 

will be either higher or equal to the actual limit load.  

Again, assume the theorem false, and the computed loads to be less than the actual limit load, 
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then the following equation should apply:  
* * *p p E p

i i i i ij ij

A V V

Tu dA Fu dV dV       (D-12) 

with E

ij  everywhere below yield. Because iT  and iF  follow from equating eq.(D-10) and 

eq.(11), it follows that:  
* *( ) 0p E p

ij ij ij

V

dV      (D-13) 

However, according to eq.(D-5) * *( ) 0p E p

ij ij ij     for E

ij  below yield, what leads to a 

contradiction and thus to the proof of the upper bound theorem.  

Some corollaries, to be mentioned, following from the lower bound theorem, are, that:  

- Initial stress or deformation have no effect on the plastic limit or collapse load provided the 

geometry is essential unaltered. This is e.g. applied in C(2014).  

- The limit load, computed from a convex yield surface, which circumscribes the actual 

surface, will be an upper bound on the actual limit load. The limit load computed from an 

inscribed surface will be a lower bound of the actual collapse load. This last is  applied in the 

derivations of e.g. D(2008a), by using the, in the von Mises inscribed Tresca polynomial). 

The graphical proof of the lower and upper bound is as follows:  

In fig.D-3 is the plastic strain increment c  normal to the failure surface and is vector l  just 

inside the surface. Index c stands for actual collapse load and index l indicates lower bound.  

 
Fig.D-3. Proof of the lower bound theorem 

 

 
Fig.D-4. Proof of the upper bound theorem 

 

According to the virtual work principle is for collapse:  



 5 

c c c c
V

F w dV    

and for a lower bound:  

l c l c
V

F w dV    

where F is the external force and w the displacement of F. The internal stress is c  with    

as strain increment. The dot product is the product of the strain increment with the 

components of the stress vector in the direction of strain increment. According to fig.D-3 is  

l c c c   
  

thus is a lower bound due to the convexity of the yield function.  

For the proof of the upper bound criterion applies, according to fig.D-4, that collapse must 

have occurred if:  

u u u u
V

F w dV     

According to the virtual work equation is: the upper bound criterion 

c u c u
V

F w dV     

The figure shows by projection of u  and c  on u that:  

u u c u      

Thus also u cF F and uF  thus is the upper bound because of the convexity of the yield 

function.  

 

D-2. Derivation of the bearing strength perpendicular to grain of locally 

 loaded timber blocks, D(2008a). 
The theory of (practical unlimited) triaxial compressive strength is applied for several cases.  

The fundamental derivation is given in D(2008a) (and in the appendix of D(1991)).  

Based on the equilibrium method of plasticity, a stress field can be constructed in the plastic 

region of a specimen which satisfies the equilibrium conditions and boundary conditions and 

nowhere surmounts the failure criterion.  

 

This provides the theoretical explanation of 

the high bearing strengths of locally loaded 

timber blocks what is derived in the 

Appendices of D(2008a). The resulting stress 

of this construction of an ultimate shear- or 

slip line field by the method of characteristics 

can precisely be represented by an analytical 

function of the outer logarithmic spiral slip 

line, which is the exact analytical solution. 

Fig.D-5. Shear direction lines of max. stress  This function in one  variable, can be given in 

 the power law form, leading to a theoretical 

and experimental value of that power of 0.5. This power representation of the stress 

spreading model of the strength increase, by confined dilatation, provides simple rules for the 

code and a simple design method that precisely matches to the data in all circumstances and 

loading cases and explains the apparent contradictory test results of Suenson, the Eurocode, 

the French rules, Graf, Korin, Kollmann and Augustin et al., discussed in the Appendix of 

D(1991), and, as shown before, explains other comparable loading cases of stress spreading 

as e.g. by nails and pin dowel connections, F(2012a,b), D(2008b). The slip-line field also 

provides an upper bound solution, which is as high as the lower bound solution and thus is 
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equal to the real solution. As mentioned in the “Discussion of annexes A”, stress 

redistribution at initial failure of the matrix increases the compression stress in the matrix and 

increases the tensile stress in the reinforcement as hardening by stress redistribution, so that, 

by the high triaxial compression strength, matrix failure by compression, only can be in 

shear, thus according to the Tresca criterion.  

The slip line solution is only a lower bound solution when also in the elastic regions, outside 

the plastic slip line region, the stress is low enough, below the ultimate value. This means that 

the ratio L/H should be just high enough to reach the same ultimate load as for longer blocks 

with higher L/H values. For shorter blocks, H of the plastic region should be limited to this 

lowest L/H value to obtain a lower bound solution. A safe method to find a sufficient low H 

for the ultimate state is to follow the spreading depth of the load of about 1.5 to 1. Thus for 

lower lengths L, the height H is limited and the slip line does not reach to the bottom of the 

block in order to have a real elastic state outside the slip lines. For ultimate load at initial 

flow, the St. Venant spreading 1 to 1 of the stresses in the isotropic matrix can be assumed, to 

have sufficient low stresses in the elastic area. This limitation of H depending on L and s is 

inserted in the theoretical formulas, providing a lower bound solution of the slip line 

construction. The theoretical formulas are not very sensitive for the assumed slopes also 

because of the adaptation of the Tresca value of these formulas to the measurements. The 

choice of H simply states a boundary condition for a lower bound solution by the theory. 

Based on theory, a correction is necessary according to: D(2012a): “Restoration of exact 

design for partial compression perpendicular to the grain”. Code rules in the past always were 

based on the exact lower bound equilibrium method, but were replaced the last decennia by 

empirical rules, sometimes based on a few test-specimens without accounting the immense 

amount of data of other investigations. This also happened to the accepted and generally 

applied Eurocode rules given in the Appendix of D(1991). To correct the new incorrect 

empirical design rules for locally loaded beams and blocks of Eurocode 5, the necessary 

theoretical explanation of these rules and of the applied test data is given in D(2012a). The by 

the coordinator of CIB-W18 given Eurocode rules, based on serviceability have nothing the 

do with the by him added test data. By putting them together a relation is suggested, but the 

tests are separate, full plastic, compression strength tests and the serviceability criterion is a, 

not related, arbitrarily chosen, criterion, not based on any investigation. It is shown in 

D(2012a) that such a criterion is mostly too safe, preventing the possibilities of most 

applications of wood but, in the same time, may be too unsafe for other boundary conditions. 

Instead of this Eurocode rule, the exact spreading rule has to be restored because this strength 

contains a necessary geometric factor as also applies e.g. for fracture mechanics and by 

volume effects of shear- tensile- and embedding strengths. As mentioned in D(2012a), only a 

strength criterion has to apply and it is illegal, against European law, to apply a serviceability 

condition as strength criterion. The European agreement (pact) of not excluding reliable 

European products on national markets by additional serviceability requirements, prevents 

e.g. that a  steel country may exclude building in wood by an additional requirement of 

compressibility equal to steel or that a wood country may prevent building is steel by the 

requirement of providing sufficient compressibility as applies to wood.  

Because safety of people is a governmental issue, sufficient reliability now is necessary by 

European law. This only can be provided by applying exact theory, (the law of nature), which 

always can be applied accordingly to the lower bound equilibrium method of limit design. 

Exact theory, means: derivation according to the scientific method, and verification of the 

derivation by all known published data and by predicting never measured behavior, which 

then has to be verified to be right by the controlling test. That is why exact theory is able to 

predict design and never measured behavior with the right calculable reliability.  

The failure data of the coordinator can not be analyzed because information of the tests is  
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lacking. Even the beam-ends specimen form is not known. Probably this was a compression 

test on a specimen in the form of a beam end, what does not say anything on real failure 

modes of beams by combined loading cases. The failure has to be analyzed exactly and it is 

necessary to get information about these few tests, (with e.g. photos of the failure form), to 

show any relevance, because the rules have to be followed by whole Europe.   

Since an extrapolated empirical rule is never identical to the theoretical description, the 

extrapolations are always unacceptably unreliable. This is shown and reported for the new 

rules of the Eurocode 5 to the Eurocode 5 Code-committee but did not pass the Dutch and 

German censorship against theory. Examples of abandoned theoretical approaches, which 

were initially accepted by the former CIB-W18 and Eurocode 5 Committee members are for 

example: E(1990): Stability design, CIB-W18/23-15-2; C(1990): Tension perpendicular, 

CIB-W18/23-10-1; D(1991): Failure criterion + Appendix bearing strength, CIB-W18/24-6-1 

and A(1993): Failure criterion, CIB-W18/26-6-1.  In D(2012a), this replacement of theory by 

unsafe and uneconomical empirical rules is shown for design of locally loaded beams and 

blocks to make necessary corrections possible. Further, the necessary theoretical explanation 

of the applied empirical Eurocode 5 rules is not given and 

is derived in D(2012a). This also was necessary because 

lack of possible correlation of the too limited data on 

which these rules are based. The data were e.g. deliberate 

restricted to only one spreading distance to deny the huge 

spreading effect of Fig.D-6. First in Section 2, the 

necessary derivation of the empirical Eurocode rule, 

Equation 1, of Blass and Gorlacher (2004) is given, 

leading to a new explanation of this empirically applied 

equation; which is based on the derivation of Madsen (see 

Madsen et al. 1982, discussed in Section 2.3 of 

D(2012a)). Next, in Section 3, the necessary theoretical 

analysis of the applied test results is given, followed in 

Appendix A by a retrieval of the earlier proposed; (theory 

based) Code rules which are in accordance with all 

known data and are applied since long in many countries. 

The theoretical derivation of the empirical Madsen 

equation is shown in Section 2 to apply only 

approximately (when extended and adapted) for very thin, 

long bearing blocks. This follows from the explanation of 

the constants, leading to an extended Madsen equation. 

Fig.D-6. Spreading strength   This Madsen equation, thus, cannot be applied as general 

 design and Eurocode rule. In contrast, it is shown by 
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Table II of Section 3.1, (given above), that all strengths values of all loading lines of Fig.D-6, 

follow precisely the spreading equation from plasticity theory discussed in D(2008a), and 

D(2006b). This leads to the necessary application of the given, simple (already since 1991 

generally applied) design rules of Appendix A of D(1991), covering not only line 3, 

(following Blass and the Eurocode 5 rule) but all lines 1-7 in Fig.D-6 precisely and covering 

all the different lines of the other investigations as shown in D(1991) for the old Eurocode 

and French rules and for the measurements of Suenson and Graf, given in Kollmann (1984) 

and Korin (1990). Thus, the apparent contrary and totally different empirical results of all 

these different investigations are fully explained even by the simple power law representation 

of the exact theory of e.g. D(2008a, 2008b, 2006b) and C(2000). This theory is based on the 

solution of the continuum mechanics boundary value problem by the method of 

characteristics. It is shown that the exclusion of the knowledge of the spreading effect in 

Eurocode 5 can be highly unsafe. This already occurred for example by measuring high 

embedding strengths on specimens with large nail distances and applying this to the low 

embedding strength structure by small nail distances. The reliable and economical design 

method, based on theory, demanded by European law, thus exists and is given for the first 

time in D(1991) and its Appendix B for locally loaded bearing blocks. For locally loaded 

beams, design should be based on plasticity theory with the failure criterion for combined 

stresses, given in A(2009). Design rules also exist in technical reports of the Stevin 

laboratory for pin-dowel joints, and in particle board, accounting for the possible very high 

embedding strength. This is common knowledge, already applied for over 30 years, (e.g. by 

the particle board industry). Concluding: 

Based on the plasticity theory the theoretical explanation of the strength data is given 

D(2008), D(2006b). It is shown when the design rules are up to a factor 6 too conservative 

and when too unreliable. It also is shown why the Blassian premise and conclusion of no 

influence of the dimensions and depth of the test specimen on the strength is opposed by all 

other investigations and only applies for the chosen spreading free test specimen dimensions 

of his Eurocode investigation. It further is demonstrated, every 10 years, that the theory 

predicts and precisely explains and fits to all known data and provides a very simple reliable 

design rule for the Eurocode (given in Appendix B of D(2008)). The analysis further shows 

that design rules for bearing blocks don’t apply unconditionally for support stresses on 

beams. This design has to be based on the failure criterion for combined stresses D(2011) 

showing that (except for unwanted early local failure due to under dimensioned bearing 

plates) the shear strength is determining for failure.  

 

D-3. Failure criterion for timber beams loaded in bending compression 

 and shear 
Limit analysis of beams is derived in: D(2010) and in D(1991). Tests demonstrated a volume 

effect leading to a follow-up program, for combined loading,  

 

 

 

 

 

 

 

 

 

 

 Fig. D-7. Loading lines and ultimate bending stress diagram    
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on semi-full-scale glulam beams with the theoretically necessary perfect boundary conditions 

of the supports. There always occurred damage through lateral buckling, as follows from the 

cracking sounds during loading and the decreased (lateral) modulus of elasticity after 

unloading, even after the smallest possible lateral displacements and even for the most 

slender beams. The theory of elasticity in Chen and Atsuta (1972) does not show bifurcation 

for the three dimensional lateral buckling case, and the large displacements analysis (third 

order theory) shows a continuous rise in the loading curve (see fig.D-7). This means that the 

top of a loading curve always is due to damage and failure and therefore elastic buckling does 

not exist in praxis for the applied full size structural elements, as confirmed by the tests. 

Stability design thus is a common second order strength calculation. The solutions of the 

second order equilibrium equations have to satisfy the failure criterion. This failure criterion 

is therefore essential and as shown in A(2009), for statically indeterminate structures, and for 

combined loading, the idealized linear elastic calculation applied for failure, as given by the 

dashed lines in Fig.D-8, is not sufficient to describe and predict strength behavior and needs 

to be replaced by the elastic-plastic calculation (solid lines in Fig.D-8).  

The existing models and proposed design rules of the 

Eurocode 5 (2004) therefore have to be corrected in this 

way.  

Now 3 different criteria are prescribed in the Eurocode 

for basically the same strength calculation: eq. 6.19, eq. 

6.23 and eq. 6.35. This needs to be replaced by one 

equation of the real failure criterion (eq.D-5), which 

accounts for the elastic-plastic behavior of wood, showing 

unlimited bending and shear plastic flow in compression 

Fig. D-8 Ultimate stresses  and brittle- stress,like behavior for tension.  

 u

2
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  (D-5) 

The assumption of all existing models for combined bending and compression loading, that a 

specific compression strain limit is determining for failure is shown to be incorrect. For 

instance, it predicts from the compression failure that there is no size effect of the strength. 

The measurements and theory show that there always is a size effect at any value of s and for 

any load combination because the bending tensile strength is always greater than the pure 

tension strength of the specimen. For this reason, bending tension failure always occurs, 

which leads to the starting point of unlimited flow in compression of the modified plasticity 

approach. The derived failure criterion for combined bending with compression is given by 

eq. (D-5). This equation can be approximated to two straight lines (eqs 15 and 16 of 

D(2010)), providing simple equations for design and for implementation of the Code. The 

derived failure criterion for combined shear with bending and compression is given by eq. 

(9). Because this line will give a cut-off of the ultimate bending-compression strength lines, 

this combined shear strength criterion always has to be checked, which should be in the 

Code. The size effect is lacking throughout the Blass model, giving questionable predictions 

of the strengths and an incorrect form of the interaction curves. The parabolic failure criterion 

of the failure criterion for timber beams, applied for Eurocode 5, is unsafe and denies the 

strong influence of quality and moisture content on the form of the curve (given by the 

parameter s). The derived equation, eq.(21) shows the curvature along the beam to be a 

quadratic function of the bending stress, instead of a linear function, as is the incorrect basis 

of the existing approaches discussed in the previous section. Equation (21) provides a simple 

method for the ultimate second order bending moment estimation. 

In D(2012b) ,the derivation is given of the combined bi-axial bending, compression and shear 



 10 

strength of timber beams. As for other 

materials the elastic–full plastic limit design 

approach applies, which already is shown to 

precisely explain and predict uniaxial bending 

strength behavior. The derivation is based on 

choosing the location of the neutral line. This 

provides the stress distribution in the beam 

cross section in the ultimate state for that case, 

making it possible to calculate the associated 

ultimate bending moments in both main 

directions and ultimate normal- and shear  

Fig. D-9. Bi-axial bending  + compression. force. The derived general equations are 

 simplified to possible elementary design 

 equations, applicable for building regulation. 

In D(2011) D(2006a), the derivation is given of the shear strength of continuous beams  

As continuation on the theoretical explanation of the bearing strengths of locally loaded 

blocks, the bracing model is extended and it is shown that, with the right dimensioning, 

always the shear strength is determining. The elastic-plastic beam theory is extended for the 

influence of normal force and shear. Based on this extension the apparent contradictory test 

results of the shear- and bending strengths of beams and continuous beams is explained and 

also the shear and bracing action of beams loaded close to the supports is derived and verified 

by tests. It appears that the theory of elasticity is not able to explain the data and to give the 

right stress distribution in two span beams, underestimating the bearing capacity by a factor 

2/3, while the elastic-plastic beam theory gives a very precise description of the data and the 

determining shear- and bending strengths. The derivations, confirmed by tests, lead to 

requirements for design rules of the Codes.  

Thus the concluding final theory is published in two articles as:  

1. “Failure criterion for timber beams loaded in bending, compression and shear”, were based 

on the, for precise data explanation, necessary elastic-plastic strength calculation a derivation 

is given of the failure criterion for combined bending, compression and shear. This exact 

limit state criterion replaces the unacceptable unsafe criteria of the Eurocode 5, (EN 1995-1-

1:2004)). It is shown that the thus far used principle of limited “flow” in axial compression as 

determining failure criterion, predicting e.g. no influence of a size effect, does not hold. 

Instead it is derived and confirmed by the data that bending tension failure is always 

determining showing the existence of a size effect and correction thus is necessary of the 

existing calculation method. Because the primary importance of the size effect for the 

strengths, also for combined bending- compression, a simple derivation of the size effect 

design equations is given and discussed.  

2. "Derivation of the shear strength of continuous beams,  

The elastic- full plastic loading curve is for all materials sufficient to explain the strength of 

beams and beam columns loaded by bending and compression. This theory is extended for 

the influence of shear stress and it is shown to be the only way to explain the combined 

bending-shear strength from test results. Also the in the past derived bearing strength theory 

is extended here for bracing action. It will be shown for continuous beams as example, that 

besides moment redistribution by plastic flow in bending, a plastic shear flow mechanism 

exists that also is able to cause full moment redistribution. The derivations lead to 

requirements for the design rules and show how the shear stress may reduce the ultimate 

bending capacity. 

 


